Thompson Sampling for 1-Dimensional Exponential Family Bandits
نویسندگان
چکیده
Thompson Sampling has been demonstrated in many complex bandit models, however the theoretical guarantees available for the parametric multi-armed bandit are still limited to the Bernoulli case. Here we extend them by proving asymptotic optimality of the algorithm using the Jeffreys prior for 1-dimensional exponential family bandits. Our proof builds on previous work, but also makes extensive use of closed forms for Kullback-Leibler divergence and Fisher information (through the Jeffreys prior) available in an exponential family. This allow us to give a finite time exponential concentration inequality for posterior distributions on exponential families that may be of interest in its own right. Moreover our analysis covers some distributions for which no optimistic algorithm has yet been proposed, including heavy-tailed exponential families.
منابع مشابه
Thompson sampling for one-dimensional exponential family bandits
Thompson Sampling has been demonstrated in many complex bandit models, however the theoretical guarantees available for the parametric multi-armed bandit are still limited to the Bernoulli case. Here we extend them by proving asymptotic optimality of the algorithm using the Jeffreys prior for 1-dimensional exponential family bandits. Our proof builds on previous work, but also makes extensive u...
متن کاملGeneralized Thompson Sampling for Contextual Bandits
Thompson Sampling, one of the oldest heuristics for solving multi-armed bandits, has recently been shown to demonstrate state-of-the-art performance. The empirical success has led to great interests in theoretical understanding of this heuristic. In this paper, we approach this problem in a way very different from existing efforts. In particular, motivated by the connection between Thompson Sam...
متن کاملThompson Sampling for Contextual Bandits with Linear Payoffs
The following lemma is implied by Theorem 1 in Abbasi-Yadkori et al. (2011): Lemma 7. (Abbasi-Yadkori et al., 2011) Let (F ′ t; t ≥ 0) be a filtration, (mt; t ≥ 1) be an R-valued stochastic process such that mt is (F ′ t−1)-measurable, (ηt; t ≥ 1) be a real-valued martingale difference process such that ηt is (F ′ t)-measurable. For t ≥ 0, define ξt = ∑t τ=1mτητ and Mt = Id + ∑t τ=1mτm T τ , wh...
متن کاملThe End of Optimism
Stochastic linear bandits are a natural and simple generalisation of finite-armed bandits with numerous practical applications. Current approaches focus on generalising existing techniques for finite-armed bandits, notably the optimism principle and Thompson sampling. Prior analysis has mostly focussed on the worst-case setting. We analyse the asymptotic regret and show matching upper and lower...
متن کاملDouble Thompson Sampling for Dueling Bandits
In this paper, we propose a Double Thompson Sampling (D-TS) algorithm for dueling bandit problems. As its name suggests, D-TS selects both the first and the second candidates according to Thompson Sampling. Specifically, D-TS maintains a posterior distribution for the preference matrix, and chooses the pair of arms for comparison according to two sets of samples independently drawn from the pos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013